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1. FROM PROTEIN SEQUENCE TO STRUCTURE

Has the protein folding problem been solved? On the first
day of this Discussion Meeting, John Moult (University
of Maryland, USA) pointed out that commentaries
announcing the solving of the protein folding problem
have a long history and, so far, these have all been the
product of over-enthusiasm. However, it was clear that
David Baker (University of Washington, USA) has
produced the most promising advances for several years.

The protein folding problem is one of the most
important and difficult facing biology. In the late 1950s,
Christian Anfinsen showed that purified ribonuclease
could spontaneously fold to an active, native structure
(Sela et al. 1957; Anfinsen 1973). The purification is the
key: it demonstrates that the information contained
within the protein itself, specifically the amino-acid
sequence, is sufficient to specify the folded three-
dimensional structure. Since then there has been a
large, concerted, and so far unsuccessful, effort to learn
the rules by which sequence specifies structure. This is
important, because protein structure in turn specifies
function.

Baker’s method starts with a ‘low resolution’ search,
with proteins represented as simplified models, and
then a refinement step, with proteins represented in full
detail. In the refinement step, a high-quality rotamer
library (Dunbrack & Karplus 1993) is used to repack
side chains, and the evaluation function is dominated
by van der Waals terms and hydrogen bonding. In other
words, the detail of the internal packing must be
correct. Because the energy well of the native state is
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very narrow, it could easily be skipped over without
refinement.

The excitement comes from the ‘nose’ of the graph
on the right-hand side (figure 1a), indicating not only
that structures close to the correct one are produced,
which is relatively easy, but also that they are the ones
with lowest energy, which is much more difficult. Baker
gives another indication of the success of his method:
the structures in figure 1b (prediction compared to
experimentally determined structure) are super-
imposed. When predictions are less accurate, it is
very difficult to make intelligible slides with the two
structures superimposed and so they are often shown
side-by-side. An informal rule of thumb is that a
researcher is onto a good method if the slides look like
that in figure 15.

Frustratingly, there is no ‘Aha!l’” moment. The
difference between Baker’s success and everyone else’s
failure is doing everything just a little better. The
scoring and search functions are better than most,
allowing the identification of the correct internal
packing, but they are an evolution rather than a
revolution.

Baker himself was at pains to point out that the
results he presented only applied to fairly small, soluble
proteins. Moreover, they were not true blind predic-
tions. They were, in the terminology of the field, ‘post-
dictions’—because the structure of the protein being
predicted was already known. Blind predictions are
essential when developing a technique so that you can
tell when progress is being made. Historically, however,
post-dictions have proved to be a poor way of
comparing methods. Typically, a new method would
be compared with those published in the literature. If
we were to produce a new method for prediction, it
could seem to be more accurate than published ones.
However, if our method used information in the
sequence and structural databases (as the majority
do) any improvement could be due to the increase in
database size in the time taken for our rival to write her
paper and get it through the publication process. Thus
all methods were apparently improvements, but it was
not clear whether progress was really being made.

This problem was largely solved in the early 1990s by
John Moult and colleagues, when they proposed and
ran the first CASP (critical assessment of methods in
structure prediction; Protein Structure Prediction
Issue 1995). The method for CASP is conceptually
simple, if difficult logistically: the organizers solicit the
community of experimental structural biologists for
structures that are about to be solved. They send the
sequences to predictors, who then have a few weeks to
return their predictions (or a few days if they use fully
automated methods). Predictions are evaluated by the
assessors, and the results are given in a meeting
(previously held in California but, for the latest round
of CASP, moved to Italy because of the current
restrictions on travel to America). Most predictors do
not know how successful they have been before the
meeting, and there is a definite air of theatre as the slide
showing the degree of success is shown. For all of that,
Moult insists that, contrary to common parlance,
CASP is an experiment, not a competition. The stated
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Figure 1. (a) The relationship between root mean square deviation between models and the correct structure (z-axis) and the
scoring function (y-axis). There are some models (lower left-most points) that have both the lowest score and are the most
accurate. Panel (b) shows the lowest scoring model (blue) superimposed onto the real structure (gold). In addition to the correct
secondary structure being in the correct position, the side chains also substantially superimpose. (Figure reproduced courtesy of

D. Baker, University of Washington, Seattle, USA.)

aims of CASP are to determine the state of the art, to
identify progress and bottlenecks, and therefore to
show where effort may be best focussed.

The direction of the prediction field has moved in the
direction of using evolutionary relationships and frag-
ments of known proteins. Moult described this as the
triumph of knowledge over physics. Some of the effects
of CASP can be a little perverse. As pointed out by Tom
Blundell (University of Cambridge, UK), developers of
new methods tend to perform less well than those who
apply the methods of others.

There are many problems outstanding. Moult
divided the predictions into different ‘zones’ of diffi-
culty. Zone 1 is the easiest in which to produce an
accurate model because closely related homologues of
known structure are available. Nevertheless, there are
still problems because it is much easier to predict how
two proteins will be similar than to predict how they
will differ; some sort of refinement of the structure is
required, and existing techniques like molecular
dynamics do not do the job accurately. Zone 2 is more
difficult, because only distantly related homologues of
known structure are available. Refinement is still
required but, additionally, getting accurate sequence
alignments is problematic. In zone 3, there are no
known homologues of known structure. The most
commonly used approach to modelling is to produce
many thousands of models, and then to try and select
the most accurate ones. It is this selection that is the
most difficult problem. Zone 3 is where most progress
has been made in recent years, and these are the types
of predictions with which David Baker has had most
success.

Zone 4 is altogether different. Zone 4 is where
membrane proteins live, and this was the subject of
David Jones’ (University College London, UK) talk.
Approximately 35% of human proteins have one or
more trans-membrane domains, but only approximately
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0.5% have known structure. Moreover, these proteins
are extremely important: around 25% of drugs target
G-protein-coupled receptors, which are a class of
d-helical membrane-spanning proteins. The disparity
arises because there are many technical difficulties with
solving the structures of membrane proteins
experimentally.

Membrane protein structures are also harder to
predict than those of globular proteins. In part, this is
due to the very heterogeneous environment in which
they are found. A trans-membrane protein must
interact not only with the hydrophobic centre of the
lipid bilayer, but also the polar head groups of the
phospholipids and the surrounding water. The difficulty
also arises from the problems with experimental
methods. There are so few membrane proteins in the
structural database, that it is extremely difficult to
develop rules from which to produce models. The rules
that Jones uses in some cases are similar to those
developed for globular proteins (e.g. amino-acid
propensities to be in different types of structures), in
some cases they are specific to membrane-spanning
helices (e.g. the longer a helix is, the more tilted it is in
the membrane), whereas in other cases rules used for
globular proteins, such as solvation potentials, are
omitted.

One of the most useful membrane protein specific
metrics is ‘variphobicity’ which combines hydrophobi-
city and sequence variability. For soluble globular
proteins, the proteins’ exterior is both accepting of
sequence substitutions (variable) and hydrophilic. The
interior, conversely, is hydrophobic and conserved.
Membrane proteins, by contrast, have regions that
interact with solvent, and so are variable and hydro-
philic, regions that interact with the lipid bilayer and so
are variable and hydrophobic, and regions that pack in
the proteins’ core, and so are conserved and hydro-
phobic. Fold recognition software can be written that
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gives high scores when conserved hydrophobic residues
are packed together and variable hydrophobic residues
are in the membrane-spanning region where they would
interact with the lipid.

The paucity of data leads to more problems, though.
There are very few structures that it is difficult to test
the methods on a wide range of membrane proteins to
determine the accuracy of the prediction methods. This
is made even more problematic by the necessity of
keeping the test set of proteins separate from the set of
proteins used to develop the method. Still, the rate at
which membrane protein structures are being solved is
increasing and, with computational methods develop-
ing in parallel, each structure has a dual utility.

2. FROM PROTEIN STRUCTURE TO FUNCTION
AND DRUG

Applications of both computationally and experimen-
tally derived knowledge of protein structures were
discussed by Michael Sternberg (Imperial College, UK)
and Tom Blundell. Sternberg wants to take protein
sequences, predict their structures, and use this
information to identify function. In contrast, Blundell
wants to predict structures from sequences and use
these structures to produce drugs. Both use evolution-
ary relationships for the first step, and use knowledge of
protein structure and the constraints it places on
evolution to identify distant evolutionary relationships
and so identify likely structures. Blundell then ident-
ifies functional sites from evolutionary constraints, and
docks small molecules into these sites. From here,
experimental methods take over: the results of the
docking predictions of which molecules are likely to
bind are tested by soaking these likely molecules into
protein crystals. The structures are solved and the
process iterated with larger, and so more tightly
binding, molecules. In this way inhibitors are produced,
which, in the majority of cases, have biological activity
as drugs.

Sternberg uses the information of evolutionarily
conserved residues to assign function by comparing
conserved residues in the protein of interest to a
database of conserved residues. The database is based
around the Gene Ontology (GO) database, which gives
a hierarchical description of function. The use of GO is
an attempt to get away from traditional methods that
assign function on the basis of overall sequence
similarity and instead to use specific residues that
produce function as an indicator of the correct
assignment.

3. EVOLUTION OF GENE REPERTOIRE AND
GENOMIC ANATOMY

It is generally agreed that bacteria can adapt to new
environments by expanding their protein repertoire via
gene duplication or horizontal gene transfer, but what
are the factors opposing the process of genome
expansion? Selection for fast reproduction rate could
have an important impact on genome size, but it might
not be the sole factor: it has been suggested that there
could be an increasing regulatory cost associated with
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increasing the number of genes (Bird 1995). Christine
Orengo (University College London, UK) argued that
this latter explanation should be invoked to understand
the evolution of prokaryotic genome size. To investi-
gate this issue, she calculated protein domain family
occurrences for 100 bacterial genomes by exploiting
structural data and identified a set of universal families
present in most of the analysed species for further
analysis. Importantly, a domain family can be rep-
resented by several relatives in a genome had the family
undergone extensive functional diversification. Thus it
is not surprising that domain families involved in the
most conserved cellular processes (e.g. translation) are
represented by similar numbers of relatives in all
bacterial genomes. In contrast, the sizes of domain
families with metabolic and regulatory functions show
strong correlations with genome size, corroborating the
idea that increasing metabolic and regulatory complex-
ity leads to larger genomes in prokaryotes. Most
importantly, while metabolic families expand linearly
with genome size, the sizes of regulatory families
increase more rapidly (as a power law), suggesting
that increasing complexity could be limited by the
inflated relative cost of gene regulation in larger
genomes. Combinatorial increases in the number of
potential gene interactions that should be regulated in a
larger genome might be responsible for the intensified
regulatory burden, but further studies are needed to
dissect the exact nature and magnitude of this
hypothesized logistic cost.

Although it is well established that the gene
repertoire of an organism can expand by gene dupli-
cations, it is less obvious how new interactions between
different genes arise during evolution. For example,
how often are the births of novel interactions linked to
gene duplication events? Sarah Teichmann (Medical
Research Council, Cambridge, UK) addressed this
question by studying protein—protein interactions and
paralogs in yeast. She presented evidence that there are
many more interactions between paralogous pairs than
expected by chance and over one third of the protein
complexes contain homologous subunits, suggesting
that evolution from homo- to hetero-oligomers by
means of gene duplication might be a common process.
Novel interactions, however, will not exclusively occur
between duplicate copies if one or both of two non-
homologous interacting partners, say A and B, undergo
duplication. Indeed, up to half of the protein—protein
interactions can be traced back to these sorts of gene
duplication events. Interestingly, most of the dupli-
cations affect only one of the interacting partners, thus
giving rise to A-B and A’-B complexes (only A is
duplicated), but only rarely to A-B and A’-B’ (both A
and B are duplicated) despite the potential gene dosage
imbalance it involves in the short term (Veitia 2004).

Recent years have witnessed not only an increasing
understanding of gene content evolution, but also new
discoveries on the evolution of genomic anatomy (Hurst
et al. 2004). Although bacterial operons are well-
established examples of non-random gene organization,
it is less well understood to what extent eukaryotic gene
order deviates from random and how gene clusters
appear during evolution. Ken Wolfe (Trinity College
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Dublin, Ireland) added a new piece to the puzzle of
eukaryotic gene order evolution by uncovering a large
metabolic gene cluster in baker’s yeast. Six of the eight
genes of the allantoin degradation pathway are located
next to one another on the same chromosome, which
would be highly unlikely if gene order was completely
random. Furthermore, this cluster must have been
assembled recently, after yeast acquired the ability to
grow anaerobically, because orthologs of the participat-
ing genes are scattered around the genome in obligately
aerobic yeast species. Selection pressure for the ability
to live in anaerobic environments can explain why
baker’s yeast has adapted to use allantoin instead of
urate as a nitrogen source (degradation of urate
requires oxygen), but why should genes involved in
the same metabolic pathway sit close together on the
chromosome? One possibility is the need for tight
transcriptional co-regulation, which might be partly
mediated by chromatin modification (therefore the
physical proximity of genes facilitates their coordinated
expression). A less frequently considered alternative
possibility is direct selection for increased genetic
linkage between the clustered genes, independent of
their co-regulation. The observations of Wolfe are
consistent with both scenarios: genes of the allantoin
degradation pathway are located in a sub-telomeric
chromosomal region where chromatin modification is
known to operate and the local recombination rate is
also low (high genetic linkage), suggesting that both
selective forces were responsible for the emergence of
the cluster.

4. A GROWING CHALLENGE FOR SYSTEMS
BIOLOGY

The ambitious aim of systems biology is to describe
cellular behaviour in a quantitative manner. One of the
most fundamental cellular behaviours is growth and to
build an in silico representation of a growing cell, we
will need to understand what contribution individual
genes make to the control of growth and how the
coordinated behaviour of thousands of genes regulates
cellular growth. Steve Oliver (University of Manche-
ster, UK) presented genome-scale experimental
approaches to generate the data required to elucidate
these issues in yeast. First, employing the conceptual
framework of metabolic control analysis (Kacser &
Burns 1973), one can estimate the growth control
coefficient of each gene by systematically altering the
level of individual gene products (by manipulating gene
dosage) and measuring the impact on the growth rate.

J. R. Soc. Interface (2005)

In principle, major growth rate controllers can be
discovered in this way. Second, growth rate is altered
and changes in gene product concentrations (i.e.
mRNA levels) are measured, and thereby genes that
are co-ordinately up- or down-regulated with increasing
growth rates can be identified. Both categories of
experimental studies were applied to yeast, and a
surprising result emerged. Almost none of the genes
with high growth rate control are significantly up-
regulated with increasing growth rates. What is the
explanation for this finding? Omne possibility is that
the activity of these genes is primarily regulated at
the post-transcriptional level (e.g. translational, post-
translational or allosteric regulation), thus mRNA
profiling cannot reveal their role in growth control.
However, if molecular activity of a growth controller
gene does not depend on its mRNA level, it remains
unclear how growth rate could depend on its gene
dosage in the first place. Alternatively, instead of
regulating only genes that are most limiting for growth,
the cell is more likely to modulate the activity of
pathways at multiple sites to achieve the desired
growth rate (Thomas & Fell 1998). Integration of
different ‘omics’ approaches will hopefully resolve this
issue in the near future.

B.P. is a fellow of the Human Frontier Science Program.
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